01 Xiao, Y., Lidsky, P. V., Shirogane, Y., Aviner, R., Wu, C. T., Li, W., Zheng, W., Talbot, D., Catching, A., Doitsh, G., Su, W., Gekko, C. E., Nayak, A., Ernst, J. D., Brodsky, L., Brodsky, E., Rousseau, E., Capponi, S., Bianco, S., . . . Andino, R. (2021). A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell, 184(25), 6037-6051.e14.
02 Kapun, M., Nunez, J. C. B., Bogaerts-Márquez, M., Murga-Moreno, J., Paris, M., Outten, J., Coronado-Zamora, M., Tern, C., Rota-Stabelli, O., Guerreiro, M. P. G., Casillas, S., Orengo, D. J., Puerma, E., Kankare, M., Ometto, L., Loeschcke, V., Onder, B. S., Abbott, J. K., Schaeffer, S. W., . . . Bergland, A. O. (2021) Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 38(12), 5782–5805.
03 Pegoraro, M., Fishman, B., Zonato, V., Zouganelis, G., Francis, A., Kyriacou, C. P., & Tauber, E. (2022). Photoperiod-Dependent Expression of MicroRNA in Drosophila. International Journal of Molecular Sciences, 23(9), 4935.
04 Fleyshman, D. I., Wakshlag, J. J., Huson, H. J., Loftus, J. P., Olby, N. J., Brodsky, L., Gudkov, A. V., & Andrianova, E. L. (2021). Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging, 13(18), 21814–21837.
05 Rezelj, V. V., Carrau, L., Merwaiss, F., Levi, L. I., Erazo, D., Tran, Q. D., Henrion-Lacritick, A., Gausson, V., Suzuki, Y., Shengjuler, D., Meyer, B., Vallet, T., Weger-Lucarelli, J., Bernhauerová, V., Titievsky, A., Sharov, V., Pietropaoli, S., Diaz-Salinas, M. A., Legros, V., . . . Vignuzzi, M. (2021). Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nature Communications, 12(1).
06 Wichert, B., Milde-Langosch, K., Galatenko, V., Schmalfeldt, B., & Oliveira-Ferrer, L. (2018). Prognostic role of the sialyltransferase ST6GAL1 in ovarian cancer. Glycobiology, 28(11), 898–903.
07 Galatenko, V. V., Maltseva, D. V., Galatenko, A. V., Rodin, S., & Tonevitsky, A. G. (2018). Cumulative prognostic power of laminin genes in colorectal cancer. BMC Medical Genomics, 11(S1).
08 Sharov, V., Rezelj, V. V., Galatenko, V. V., Titievsky, A., Panov, J., Chumakov, K., Andino, R., Vignuzzi, M., & Brodsky, L. (2021). Intra- and Inter-cellular Modeling of Dynamic Interaction between Zika Virus and Its Naturally Occurring Defective Viral Genomes. Journal of Virology, 95(22).
09 Mechtler, P., Johnson, S., Slabodkin, H., Cohanim, A. B., Brodsky, L., & Kandel, E. S. (2017b). The evidence for a microRNA product of human DROSHA gene. RNA Biology, 14(11), 1508–1513.
10 Li, K., Zhang, S., Song, X., Weyrich, A., Wang, Y., Liu, X., Wan, N., Liu, J., Lövy, M., Cui, H., Frenkel, V., Titievsky, A., Panov, J., Brodsky, L., & Nevo, E. (2020). Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation. Proceedings of the National Academy of Sciences, 117(51), 32499–32508.
11 Rai, P., Chuong, C., LeRoith, T., Smyth, J. W., Panov, J., Levi, M., Kehn-Hall, K., Duggal, N. K., & Lucarelli, J. W. (2021). Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 563, 98–106.
12 Hyams, Y., Panov, J., Rosner, A., Brodsky, L., Rinkevich, Y., & Rinkevich, B. (2022). Transcriptome landscapes that signify Botrylloides leachi (Ascidiacea) torpor states. Developmental Biology, 490, 22–36.
13 Butenko, S., Satyanarayanan, S. K., Assi, S., Schif-Zuck, S., Barkan, D., Sher, N., & Ariel, A. (2020). Corrigendum: Transcriptomic Analysis of Monocyte-Derived Non-Phagocytic Macrophages Favors a Role in Limiting Tissue Repair and Fibrosis. Frontiers in Immunology, 11.
14 Safina, A., Cheney, P., Pal, M., Brodsky, L., Ivanov, A., Kirsanov, K., Lesovaya, E., Naberezhnov, D., Nesher, E., Koman, I., Wang, D., Wang, J., Yakubovskaya, M., Winkler, D., & Gurova, K. (2017). FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Research, gkw1366.
15 Xiao, Y., Dolan, P. T., Goldstein, E. F., Li, M., Farkov, M., Brodsky, L., & Andino, R. (2017). Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses. Nature Communications, 8(1).
16 Xiao, Y., Rouzine, I., Bianco, S., Acevedo, A., Goldstein, E., Farkov, M., Brodsky, L., & Andino, R. (2016). RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence. Cell Host &Amp; Microbe, 19(4), 493–503.
17 Fang, X., Nevo, E., Han, L., Levanon, E. Y., Zhao, J., Avivi, A., Larkin, D., Jiang, X., Feranchuk, S., Zhu, Y., Fishman, A., Feng, Y., Sher, N., Xiong, Z., Hankeln, T., Huang, Z., Gorbunova, V., Zhang, L., Zhao, W., . . . Wang, J. (2014). Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nature Communications, 5(1).
18 Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686–690.
19 Pfaller, C. K., Donohue, R. C., Nersisyan, S., Brodsky, L., & Cattaneo, R. (2018). Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLOS Biology, 16(11), e2006577.

OmicsLogic is a program that embeds data-driven concepts into biological projects, spanning the student learning journey from observer to participant in research. This journey begins with identifying an interesting biological research problem or question that can be answered with data, continues with the collection and organization of data, and concludes with students interpreting and drawing conclusions about the data and the possibility of research publications. It is a training program developed by Pine Biotech in collaboration with the Tauber Bioinformatics Research Center from the University of Haifa, Israel. It is currently available at campuses around the world and online. Learn More

OmicsLogic Research Project
01 Parekh, U., Mazumder, M., Kaur, H., & Brodsky, E. (2021). In Silico Analysis and Characterization of Differentially Expressed Genes to Distinguish Glioma Stem Cells from Normal Neural Stem Cells. BioRxiv.
02 Diken, D. (2021, January 1). Radiation Threats to Humans in Space and an alternative approach with Probiotics. bioRxiv.
03 Dolaner, S. (2021, May 24). Identification of LncRNAs as Therapeutic Targets in Chronic Lymphocytic Leukemia | Columbia Undergraduate Science Journal.
04 Dey, S., Kaur, H., Mazumder, M., & Brodsky, E. (2022). Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics &Amp; Informatics, 20(3), e32.
05 Vaja, R., Kaur, H., Mazumder, M., & Brodsky, E. (2021). In silico Analysis of Transcriptomic Profiling and Affected Biological pathways in Multiple Sclerosis. Immunogenetics: Open Access.
06 Sen, P., & Kaur, H. (2023). In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. Human Gene, 35, 201135.
07 Boateng, R. A., Myers-Hansen, J. L., Dolling, N. N. O., Mensah, B. A., Brodsky, E., Mazumder, M., & Ghansah, A. (2022). Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance:A Computational-Based Study. Molecules, 28(1), 145.

Check out our more student projects on different specialization areas (Oncology, Precision Medicine, Space Omics, etc.) on the OmicsLogic Portal OmicsLogic – Research Projects

We provide products, solutions, and services so that everyone can analyze data and make new discoveries – without ever having to code. For further inquiries, please contact us:

The T-BioInfo Bioinformatics Platform was developed by the experts from the Tauber Bioinformatics Research Center at the University of Haifa, Israel. The center is under the guidance of its founders, Dr. Alfred Tauber and Dr. Leonid Brodsky. This research center recognized the importance of user-friendly bioinformatics tools and hands-on learning as the exponential growth of data is transforming basic research and clinical applications. Together with research and industry collaborators, the team built an interactive ‘omics platform that contained built-in learning tips, an A.I. engine to guide decision making, and a rich visual analytics interface to simplify the interpretation of the data. Learn more

Scroll to Top